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Efficient Numerical Solution of Stochastic Differential
Equations Using Exponential Timestepping
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We present an exact timestepping method for Brownian motion that does not
require Gaussian random variables to be generated. Time is incremented in
steps that are exponentially-distributed random variables; boundaries can be
explicitly accounted for at each timestep. The method is illustrated by numerical
solution of a system of diffusing particles.

KEY WORDS: Stochastic calculus; stochastic algorithms; Wiener process;
diffusion with boundaries.

1. INTRODUCTION

Numerical methods that are in common use(1�4) for solving stochastic
differential equations have a timestep of fixed length, perhaps divided up
into intermediate timesteps and dynamically adapted. However, it is also
possible to have a timestep whose length is a random variable.(5, 6) We
present a method where the timestep is a random variable with an exponen-
tial distribution.
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The simplest case of a stochastic process is the Wiener process. An
exact update for this process under a fixed timestep method requires gener-
ation of a Gaussian random variable. Under exponential timestepping, an
exact new value is generated at a time incremented by $t, where P[$t>t]
=exp(&*t), using an exponentially distributed random variable. The latter
can be generated as minus the logarithm of a uniformly distributed random
variable, at less computational cost than that involved in generating a
Gaussian random variable. The price to be paid is uncertainty as to the
value of the incremented time.

Exponential timestepping has an advantage over fixed-timestep
methods when the stochastic differential equation models a diffusing par-
ticle in a space with special points, such as boundaries or other particles.
In such situations, one must deal with the possibility that, even though the
process may be on the same side of a boundary at time t and at time t+2t,
there is a finite probability that the boundary was hit at some intermediate
time.(7) This probability can be calculated exactly in many cases when 2t
is exponentially distributed, using methods from excursion theory.(8�15)

Another appealing feature is that the density of the position at the end of
the exponential timestep for the subset of paths that hit the boundary
before the end of the timestep is the same as if the timestep had started at
the boundary.

Each path of a Markov stochastic process that starts at the origin can
be divided up into a series of excursions starting and ending at the origin.(8�15)

Successive excursions are independent. The task of the excursion theorist is
to assign relative probabilities or ``rates'' to sets of excursions: they can, for
example, be classified according to the maximum distance of the process
from the origin during the excursion. A timestep that is an exponentially-
distributed random variable can be naturally incorporated into these
calculations by including a constant probability per unit time that the path
is ``marked.'' Similarly, absorbing boundaries can be included by specifying
that the path is ``killed'' if a certain point is reached during an excursion.

Section 2 is devoted to definitions and basic results for the Wiener
process. In Section 3, we describe the implementation of exponential time-
stepping for the Wiener process: we generate an exponential and a \1-dis-
tributed random variable at each timestep. In the presence of a boundary,
the possibility of hitting the boundary is exactly taken into account by
generating, in addition, a uniformly-distributed random variable at each
timestep Section 3 also contains the example of a Brownian particle diffusing
between two boundaries that are themselves diffusing. We dynamically vary
the parameter controlling the mean value of the timestep. In Section 4, we
conclude. Extensions of the method of exponential timestepping to more
general processes with continuous paths are being developed.(17)
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2. DEFINITIONS

2.1. Wiener Process

The process Wt , for which

W0=0, (WtWs) =min(t, s) (1)

is usually called the Wiener process (or standard Brownian motion). For
any time t and fixed timestep 2t, the increment Wt+2t&Wt is a Gaussian
random variable with mean 0 and variance 2t.

Let $t be exponentially distributed:

P[$t>t]=exp(&*t) (2)

Then

P[W$t>x]=|
�

0
* exp(&*t)

1
2 \1&erf \ x

- 2t++ dt (3)

where

erf(x)=
2

- ? |
x

0
e&y2

dy (4)

Thus W$t has a symmetric exponential, rather than Gaussian, distribution:

P[W$t>x]=P[W$t<&x]= 1
2 e&&x (5)

where

&=- 2* (6)

2.2. Passage Time

The passage time Hb is defined by

Hb=inf[t>0 : Wt=b] (7)

This quantity can be directly calculated, using the up-down symmetry of
Wiener increments.(10) Let t>0. Then

P[Hb<t]=P[Hb<t, Wt<b]+P[Hb<t, Wt>b]=2P[Wt>b]

=\ 2
?t+

1�2

|
�

b
e&y2�2t dy=1&erf \ b

- 2t+ (8)
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The density of Hb ,

R(t)=
d
dt

P[Hb<t] (9)

is obtained by differentiating (8) with respect to t and using integration by
parts:

R(t)=
|b|

- 2?t3
e&b2�2t (10)

2.3. Boundaries

Consider the subset of paths for which Hb<$t. For an event 3, let

S[3]=P[3 | Hb<$t] (11)

For example,

S[W$t<0]=P[W$t<0 | Hb<$t]=
P[W$t<0, Hb<$t]

P[Hb<$t]
(12)

For the complementary event, let

Q[3]=P[3 | Hb�$t] (13)

The probability that Hb<$t can be obtained by direct integration
over the density (10):

P[Hb<$t]=
b

- 2? |
�

0
t&3�2 exp \&

b2

2t
&*t+ dt

=e&&b (14)

Similarly, the density of W$t conditioned on having hit b is given by

d
dx

S[W$t<x]=
1
2

& exp(&& |b&x| ) (15)

Note that (15) is the same density as that after an unconditioned timestep
started at the boundary b.
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3. EXPONENTIAL TIMESTEPPING FOR THE WIENER PROCESS

To generate an increment of the Wiener process under exponential
timestepping, two random variables are required. The first, s, takes the
values +1 or &1 with equal probability. The second, p, is exponentially
distributed:

P[p>x]=exp(&x) (16)

Given the value of Wt , the value of Wt+$t is given by

Wt+$t=Wt+&&1sp (17)

Thus the density of the random variable Wt+$t&Wt is given by

d
dx

P[Wt+$t&Wt<x]=
1
2

& exp(&& |x| ) (18)

as required by (5). The value of Wt+$t thus produced is exact in distribution.
However, the exact value of $t at each timestep is not recorded. Note that

($t)=
1
*

(19)

so that the elapsed time after N timesteps is a random variable with mean
N�*.

3.1. Exponential Timestepping with a Boundary

Suppose we are interested in the statistics of paths run until they hit
a boundary at b>0. The simplest way to ascertain the hitting time is to
increment the process using either standard or exponential timestepping,
producing values Xt0

, Xt1
, Xt2

,..., until Xti
>b at some t i . However, large

errors result in realizations for which a boundary is hit within an interval
(ti , ti+1), although both Xti

<b and Xti+1
<b. The discretization represented

in Fig. 1, for example, does not detect the first crossing of the dotted line,
although the timestepping itself is exact. Under exponential timestepping, the
possibility that the numerical method misses a crossing and thus seriously
overestimates the first hitting time can be explicitly excluded.
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Fig. 1. Wiener path with an absorbing boundary at b. The dots are equally-spaced in time,
representing a standard discretization.

Let W$t=z. Then the probability that the boundary at b has been hit
between t=0 and t=$t is given by

P[Hb<$t | W$t=z]=
P[Hb<$t, W$t=z]

P[W$t=z]

1 z�b
={e&2&(b&z) 0<z<b (20)

e&2&b z�0

Exponential timestepping in the presence of a boundary therefore proceeds as
follows:

(i) Generate an increment according to (17).

(ii) Generate a uniformly-distributed random variable u. Let the
positions before and after the increment (i) be x and z. A boundary at b>x
is deemed to have been hit during the timestep if u<P where

1 z�b
P={e&2&(b&z) x�z<b (21)

e&2&(b&x) z<x

A process that evolves for a time that is an exponentially-distributed
random variable is equivalent to a process that is run with a constant
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probability per unit time of being ``marked.''(8�14) One consequence of this
is that the statistics of the fraction of paths that hit b before the end of the
timestep (and are allowed to continue) are the same as the statistics that
would be found if the process were run for an exponentially-distributed
time starting at b (see (15)). On the other hand, the density defined by

Rc(x)=
d

dx
Q[W$t<x] (22)

is given by

Rc(x)=
&
2

(e&& |x|&e&&be&&(b&x))(1&e&&b)&1 x<b (23)

3.2. Exponential Timestepping with Diffusing Boundaries

We have introduced exponential timestepping for Wiener processes
with constant boundaries. We now illustrate the use of the exponential
timestepping algorithm in the following context. A test particle whose paths
are those of a Wiener process diffuses, starting at the origin, between upper
and lower boundaries that are themselves following Wiener paths. The
initial positions of the boundaries are b and &a. Which boundary is hit
first? We show that the exponential timestepping algorithm resolves the
small difference between the cases of diffusing and non-diffusing boundaries.
The algorithm for this case is no longer exact: at each timestep we correct
only for the closest boundary.

The distance between two Brownian particles evolves with twice the
mean-square displacement of a Wiener process. Thus, to ascertain whether
the test particle has hit the closest boundary, we implement the test (21)
with the replacement & � &�- 2. In addition, we have found that dynami-
cally adapting the value of the parameter & that controls the mean length
of the exponential timestep leads to an efficient algorithm.

Before presenting numerical comparisons, we first calculate the prob-
ability that the upper boundary is hit before the lower boundary. Let Vt

and Ut be Wiener processes, independent of each other and of Wt , with

U0=b
(24)

V0=&a

Let Hb*=inf[t>0 : Wt=Ut], H*&a=inf[t>0 : Wt=Vt] and t*=
min(Hb* , H*&a).
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Fig. 2. The density of t* is equal to that of the first exit time of a two-dimensional Brownian
motion from the shaded region.

Now

( (Ut&Wt)(Wt&Vt)) =&t (25)

We change variables to a two-dimensional diffusion with independent
components, defining two new Wiener processes Yt and Zt and setting

Ut&Wt=- 2 Yt

(26)
Wt&Vt=

1

- 2
(&Yt+- 3 Zt)

The density of t* is the same as the density of first exit of Brownian motion
from the domain shown in Fig. 2.

Let R0=(Y2
0+Z2

0)1�2, 30=atan(Z0 �Y0) and

h(r, ,)=P[Hb*<H*&a | R0=r, 30=,] (27)

Then h(r, ,) is defined on r�0, ?�6�,�?�2 and satisfies

\ �2

�r2+
1
r

�2

�r2+
1
r2

�2

�,2+ h(r, ,)=0 (28)

with the boundary conditions

h \r,
?
6+=0, h \r,

?
2+=1 (29)
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Fig. 3. Numerical results (dots with error bars) are compared with exact expressions (solid
lines) in both graphs. The top graph plots the probability that the upper boundary is hit
before the lower boundary when both are diffusing, versus the initial position of the upper
boundary, b. The lower boundary has initial condition &a=&1. Also shown in the top graph
is (33), the corresponding probability when the boundaries are fixed at b and &a (dotted
line). The bottom graph plots the difference between the cases of diffusing and fixed boun-
daries. The numerical results shown were obtained using exponential timestepping with
boundary correction; the parameter & was dynamically adapted according to (34), with &� =20.
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The solution of (28) with (29) is simply

h(r, ,)=
3
? \,&

?
6+ (30)

The initial conditions (24) correspond to

Y0=
1

- 2
b

(31)

Z0=(2a+b)�- 6

In Fig. 3 we compare

P[H*b<H*&a]=
3
? \atan \2a+b

- 3b +&
?
6+ (32)

with numerical results using the exponential timestepping algorithm and
with the corresponding analytical result from the case where the upper and
lower boundaries are fixed:

P[Hb<H&a]=
a

a+b
(33)

The numerical results shown were obtained with the value of & chosen at
each timestep according to

&=&� �(Ut&Vt) (34)

where &� is constant.
In Fig. 4, we plot the error in the numerically-measured fraction of

paths hitting the upper boundary using exponential and Gaussian
timestepping. The latter was performed with a fixed timestep 2t=0.001
and no boundary correction was attempted. It produced a larger statistical
error because, from the same amount of computer time, fewer realizations
were obtained due to the cost of generating Gaussian random variables.
Thus, in addition to being more accurate, exponential timestepping is more
rapid for this problem.

In Fig. 5, we compare a histogram of values of the first time of a
collision, generated using exponential timestepping, with the exact density
of t*. Let

R*(t)=
d
dt

P[t*<t] (35)
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Fig. 4. The difference between the exact result (32) the numerically-measured fraction of
paths hitting the upper boundary is plotted versus the initial position of the upper boundary, b.
Gaussian timestepping was performed with 2t=0.001; exponential timestepping was carried
out with boundary correction and & varied according to (34), with &� =25.

Then(16)

R*(t)=
1
2

1

- ?t3
(be&b2�4t+ae&a2�4t&(b+a) e&(b+a)2�4t) (36)

The numerical histogram and the exact solution (36) are almost
indistinguishable. Also shown is the density of the first exit time for the
case of fixed boundaries.

4. CONCLUSION

The simplest method for numerical generation of paths approximating
those of a continuous stochastic process is the Euler method. With a fixed
timestep 2t, two increments are added at each update: a deterministic
increment proportional to 2t and a mean-zero Gaussian random variable
with standard deviation proportional to 2t1�2. In this work, we implement
the unconventional method of taking each timestep as a random variable:
instead of a fixed timestep 2t, an exponentially-distributed timestep $t is
used, with mean length *&1. The random increment at each timestep is now
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Fig. 5. The density of the first exit time for diffusing boundaries, (36), is compared with a
histogram of numerical values, compiled using the exponential timestepping algorithm. The
parameters in (36) are a=b=1. Numerical values are N�* where N is the number of timesteps
before the first collision is recorded; each numerical realization was generated with &=40. The
agreement is such that (36), shown as a solid line, is almost invisible beneath the histogram.
The dotted line, for comparison, is the density of the exit time for fixed boundaries at \1.

symmetric exponential with a factor of *1�2 in the exponent. In this work
we restrict ourselves to the Wiener process, where the deterministic incre-
ment is zero at every timestep.

We believe that this method is likely to be efficient in the study of the
diffusion of a collection of interacting point particles on a line, and this
topic will be the subject of a future article.
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